CTPYKTYPa M функции NHTeppencob V.1, V.3

Костюкович Н.Ф.

В абонентском доступе ТфОП рекомендованы следующие типы интерфейсов:

В сети абонентского доступа к N-ISDN рекомендованы следующие интерфейсы:

- V1 (BRI) базовый доступ ISDN
- V3 (PRI) первичный доступ ISDN

Структура и функции интерфейсов (І.430, І.431)

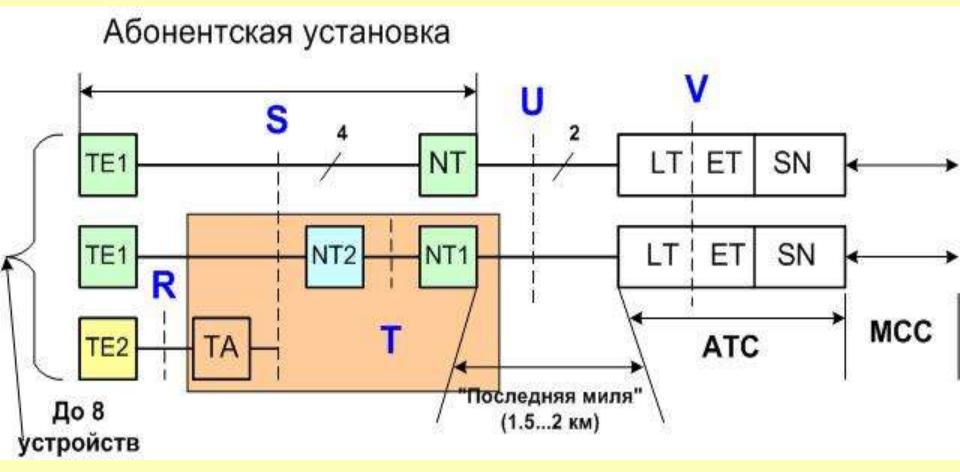
- В узкополосной ISDN за основу взята пропускная способность абонентского цифрового канала 64 кбит/с.
- Существуют два типа каналов:
 - <u>-основные и</u>
 - **–**вспомогательные.

Основные каналы используются для передачи пользовательской информации в режиме КК или КП (плоскость U)

В настоящее время определены три типа основных каналов с различной пропускной способностью.

Обозначения	B	H0	H11	H12
<u>основных</u>				
каналов				
Скорость	64	384	1536	1920
цифрового				
потока, кбит/с				

Вспомогательные каналы служат для обмена служебной информацией (плоскость С и М) – в частности, для сигнализации, а также для выполнения функций Э и ТО.


Определены два типа вспомогательных каналов.

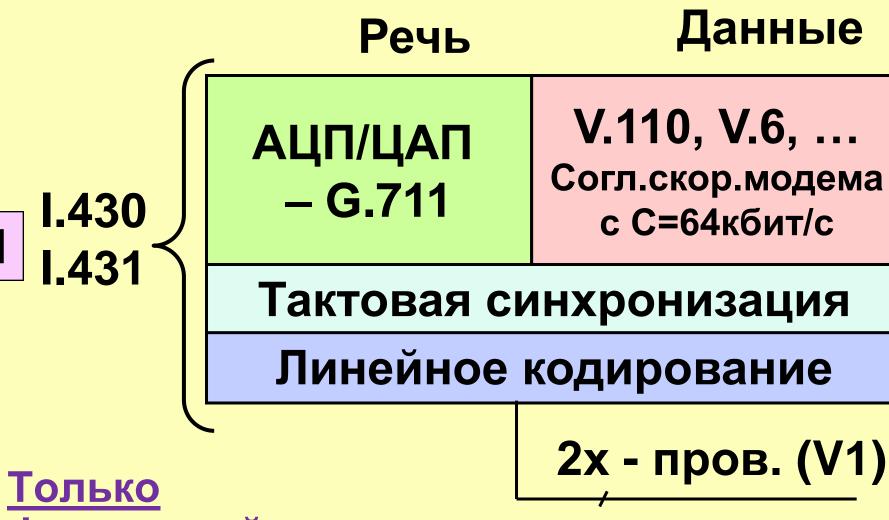
Обозначение канала	Протоколы сигнализации	Скорость кбит/с
D	Протоколы ITU-T Q.921, Q.931	16 или 64
E	Протоколы ITU-T (ОКС-7) (0.7xx - MTP ISUP)	64

- Одним из основных условий при внедрении ISDN является требование использования существующей абонентской сети с целью экономии капитальных затрат.
- В ISDN необходимо "довести до абонента цифру". Даже для самого малого - базового доступа 2*В + D скорость передачи составляет
- •2*64 + 16 + 16 = 160 кбит/с,
- что соответствует спектру не менее 160 кГц, т. е. существенно выше чем в аналоговых сетях.
- Но абонентские линии должны использоваться те же (т.е. многопарные кабели, рассчитанные на работу в спектре 0,3...3,4 кГц)!!!

- Непосредственная передача сигналов с таким спектром без оптимизации формы сигналов и применения специальных кодов по существующим абонентским линиям возможна на расстояние не более 200 - 500 м, в зависимости от состояния абонентской линии.
- Необходимая же дальность абонентского доступа составляет 1.5 - 2 км.
- Учитывая, что в России в силу национальных особенностей состояние абонентских линий особенно плачевно решение вопроса "последней мили" для России стоит особенно остро.
- Одно из требований МККТТ на U-интерфейсе состоит в обеспечении затухания на частоте 96 кГц не более 6 дБ. Очевидно что это затухание сильно зависит от расстояния от NT до ATC.

С этой целью в Синей Книге МККТТ (рек. I.100 - I.600) была определена общая структура абонентского доступа для ISDN (I.430...I.440).

НАЗНАЧЕНИЕ:

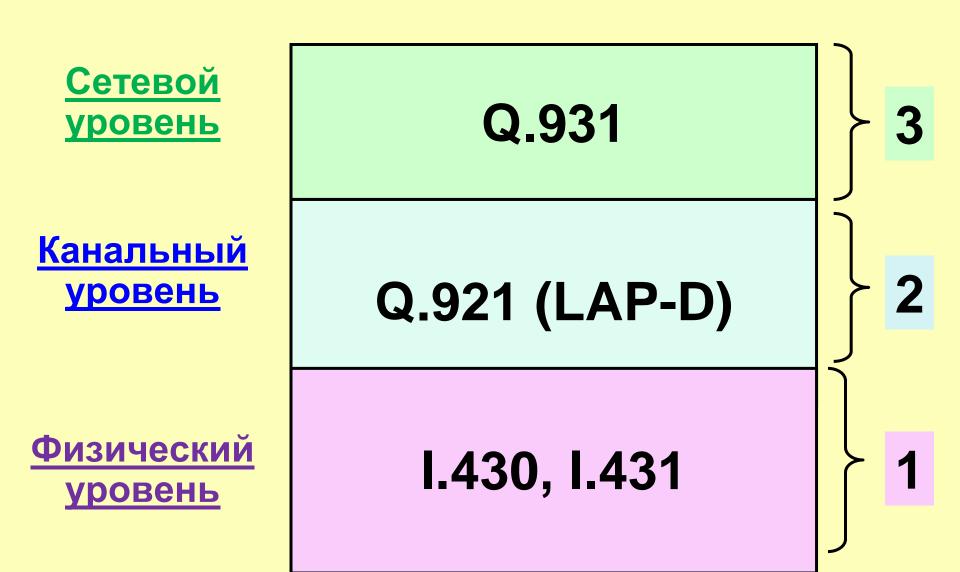

- TE1 оконечное абонентское устройство со стандартными стыковыми характеристиками, т.е. имеющее встроенный S/T интерфейс;
- TE2 оконечное абонентское устройство с иными стыковыми характеристиками (например, Z-интерфейс, RS-232, V.21,...);
- **ТА -** адаптер для преобразования стыковых характеристик в стандартные;
- NT1 сетевое окончание 1, функции которого следующие:
- обеспечение передачи информационных бит по линии U-интерфейса (линейные коды);
- обеспечение технического обслуживания линии и контроля рабочих характеристик;
- синхронизация;
- подача питания (от АТС к ТА);
- мультиплексирование физических каналов;
- обеспечение управление доступом

NT2 - сетевое скончание 2, функции которого следующие:

- коммутация;
- концентрация;
- функции технического обслуживания;
- поддержка S-интерфейса;
- обработка протоколов уровней 2 и 3 (плоскость С).
- LT/ET станционное окончание (абонентская плата функции аналогичны NT1/NT2);
- R интерфейс между ТЕ2 и ТА;
- S четырехпроводный интерфейс "пользователь-сеть), через который терминалы пользователя стандартным образом взаимодействуют с ISDN;
- Т стандартизованный интерфейс (аналогичен S);
- U интерфейс между NT1 и LT, включающий в себя физическую линию;
- V интерфейс между LT и ET (аналогичен T интерфейсу)

Архитектура протоколов в интерфейсах V1, V3

Плоскость **U**



Только физический уровень

4x - пров. (V3)

Архитектура протоколов в интерфейсах V1, V3

Плоскость С

Архитектура протоколов в интерфейсах V1, V3

Плоскость М

Только физический уровень

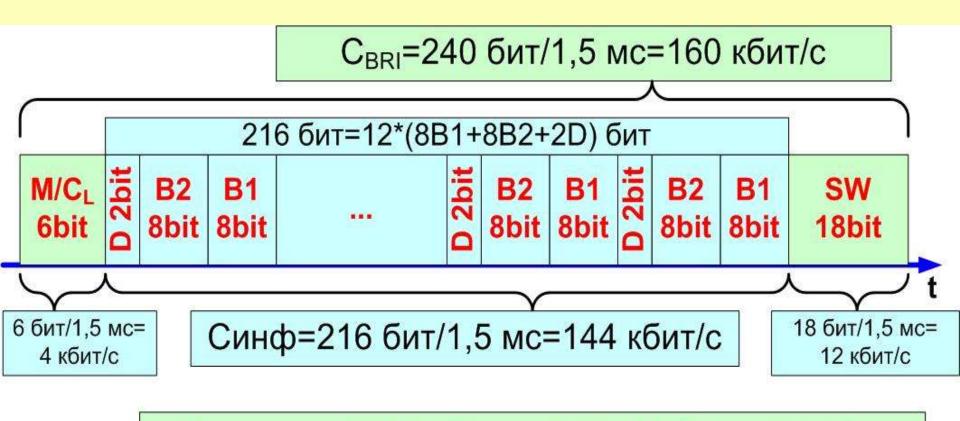
Физический уровень интерфейсов (G.960, G.962)

1. Электрические характеристики

При базовом доступе до абонентских аппаратов доводится цифровой поток

$$C = 2B + D_{16} + M_{16} = 160 \text{ кбит/с}$$

Реальная скорость цифрового потока с первичной скоростью составляет 1984 кбит/с на сетях Европы и России и 1536 кбит/с на сетях Америки и Японии.

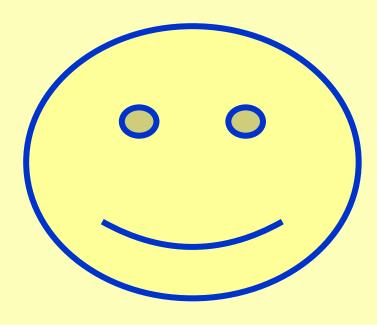

$$C = 30B + D_{64} + M_{64} = 2048 \text{ кбит/с}$$

уровни передачи – например:(код 2B1Q:+2,5B;+0,83B;-2,5B;-0,83B)

2. Линейные коды

- V1 2B1Q, 4B3T
- ■V3 HDB3, AMI

3. Структура цикла для V1



При коде 2B1Q - Слин=120 qt/1,5 мс=80 кбод

SW-синхрослово М / С_I – управляющие биты (тестирование...)

FIN

СПАСИБО за ВНИМАНИЕ

